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Abstract

This paper proposes a new method for updating online the
client models of a speaker recognition system using the test
data. This problem is called unsupervised adaptation. The main
idea of the proposed approach is to adapt the client model us-
ing the complete set of data gathered from the successive test,
without deciding if the test data belongs to the client or to an
impostor. The adaptation process includes a weighting scheme
of the test data, based on the a posteriori probability that a test
belongs to the targeted client model. The proposed approach
is evaluated within the framework of the NIST 2005 and 2006
Speaker Recognition Evaluations. The links between the adap-
tation method and channel mismatch factors is also explored,
using both Feature Mapping and Latent Factor Analysis (LFA)
methods. The proposed unsupervised adaptation outperforms
the baseline system, with a relative DCF improvement of 27%
(37% for EER). When the LFA channel compensation tech-
nique is used, the proposed approach achieves a reduction in
DCF of 20% (12.5% for EER).

Index Terms: speaker verification, unsupervised adaptation.

1. Introduction

Gaussian Mixture Model (GMM) based systems are widely
used in the field of text-independent speaker recognition [1].
Associated with the background model paradigm (so-called
UBM/GMM), they achieve a good level of performance, as
shown by the NIST-SRE evaluations '. The GMM/UBM is also
a key element for discriminative approaches like SVM [2].

A large part of the research efforts has been put in terms of chan-
nel compensation during the past years in order to deal with
intersession mismatches, which is one of the main causes of
degradation for a speaker verification system. A classical so-
lution to this problem is to increase the amount of information
used to train the client model by including multiple enrolment
sessions, as proven by the performance obtained when multi
session are provided in training. However, this solution depends
on the availability of such training data and the improvements
are not related only to the channel effects, the knowledge on the
speaker characteristics is also improved by a larger multi ses-
sion training set. In order to handle the channel effect problem
even if only one session per client is available for training, The
Latent Factor analysis (LFA) approach was recently introduced
in [3]. LFA follows and extends the GMM-UBM paradigm and
achieved a significant improvement during the NIST-SRE 2006
campaign.

Inttp://www.nist.gov/speech/tests/spk/
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In unsupervised adaptation, the client model is updated on-
line, using data gathered from the test trials. The different ap-
proaches to unsupervised adaptation proposed in the literature
rely mainly on a decision step to decide if a test trial belongs
to the targeted speaker [4, 5, 6, 7, 8]. If the test trial is consid-
ered as client, it is used to either retrain the corresponding client
model or to adapt it. The main drawback of such techniques re-
mains the difficulty to set a decision threshold for selecting the
trials: the performance gain relies on the number of client test
trials detected when a false acceptation, an impostor trial is ac-
cepted as a client one, degrades the speaker model. Figure 1
illustrates the client and impostor score distributions for a clas-
sical UBM/GMM system computed on the NIST SRE 06 with
one session for training and testing. Due to this drawback (hard
decision), a previous work on adaptation has shown only small
improvement. To explain this result, it is reasonable to say that
1) few client tests obtain a score higher than the threshold and
2) if a client test obtains a score higher than the threshold, it is
certainly already well represented in the current client model.
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Figure 1: NIST SRE 05 impostor/target score distribtions

The work presented in this paper extends previous works [9]
which intends to avoid this problem by withdrawing this early
decision step. In this approach, the speaker model adaptation is
applied to each test trial, even if it does not belong to the client
but to an impostor. This “continuous adaptation” method relies
on a confidence measure on the tying between the test trial and
the target speaker, used to weight each test information during
the speaker model adaptation process. We make the asumption
that adding a test belonging to an impostor will not damage the
target speaker model if it is associated to a low confidence mea-
sure. Moreover we hope that some relevant information could
be gathered from such impostor data such as channel related in-
formation.

This paper is organised as follow. Section 2 is dedicated to the
unsupervised adaptation itself. Section 3 concerns the experi-
mental setup while Section 4 presents the experimental results.
Finally, Section 5 presents some conclusions and perspectives.
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2. Unsupervised adaptation

The work described in this paper intends to avoid the main lim-
itation of classical unsupervised adaptation techniques which
rely on a hard decision threshold to decide if a given trial data
set should be used for the adaptation. Using a hard decision
presents two main disadvantages: to avoid the selection of im-
postor data for adaptation the thresholds are fixed high, sec-
ondly, the selected data is less interesting as it should be already
well represented in the current target model. The approach pro-
posed in this paper addresses these problems as no hard deci-
sion is used: all the test trials are taken into account during
the adaptation phase, according to a confidence measure. The
statistics gathered from the test trials are incorporated into the
target model using a criteria based on a confidence measure.

2.1. Confidence measure estimation

The confidence measure is the estimation of the a posteriori
probability of a test trial belonging to a given target speaker.
This a posteriori probability is computed using two score mod-
els, one for the client scores and one for the impostor scores.
Each score distribution is modelled by a 12 components GMM
learned on a development set.

The confidence measure is then computed using the World
MAP (WMAP) approach [9, 10]. WMAP is a simple MAP
probability estimator dedicated to speaker recognition as it
works on log likelihood ratios, i.e. it takes into account the
background model. WMAP also takes into account the prior
probabilities of both classes and is defined as follows:

P(m:y) _ P(s|x:y).P(x:y)

~ P(sle =y).P(z =y) + P(s|z # y).P(x #(7{%

where P(x = y) is the prior probability of a target trial,
P(x # y) is the prior probability of an impostor trial, P(s|z =
y) is the likelihood of the score (LLR) given the target score
distribution, P(s|z # y) is the likelihood of the score (LLR)
given the impostor score distribution.

Note that WMARP outputs a fixed probability equal to the
prior probability of a target trial when the observed score is
outside the learned target and impostor score distributions, i.e.
when the score is very low or very high. Scores used are T-
normed [1]. To avoid the problem of the reestimation of the
WMAP function after each adaptation step, we use only the
initial target model, learned on a single session recording, to
compute the score of the test trials.

2.2. Proposed adaptation function

The proposed adaptation function relies on the classical MAP
algorithm [1], where only the mean parameters are updated.
The empirical statistics are gathered from all the available data
using the EM algorithm (initialized with the background model
and maximizing the Maximum Likelihood criterion). The
statistics are then combined using the following rules:

e The statistics gathered from the initial voice excerpt used
to train the target speaker model is associated to a confi-
dence measure equal to 1;

e The statistics gathered from the different test trials are
associated with the corresponding confidence measure;

e The empirical means and the corresponding occupan-
cies are computed for each Gaussian components of the
GMM, using all the EM statistics weighted by the corre-
sponding confidence measures.
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Finally, the adapted means (,uﬁ,mp) for each Gaussian compo-

nent (7) are computed using the background means (1 ), the
empirical means(}te,;,) and the occupancy values (n;) using the
MAP formula:

Uz
n; +r

Uz

n; +r’

:U’inap =
where r is the MAP relevance factor, fixed to 14 in this work.

3. Tools and Protocols
3.1. Database

All the experiments presented in Section 4 are performed based
upon the NIST SRE 2005 and 2006 databases, all trials (det 1),
lconv-4w lconv-4w, restricted to male speakers only.

This condition consists of 274 and 354 speakers for NIST
SRE 2005 and 2006 respectively. Train and test utterances con-
tain 2.5 minutes of speech on average (telephone conversation).
The whole speaker detection experiment consists in 13624 tests,
including 1231 target tests and 12393 impostors trials for the
NIST SRE 2005 database with up to 170 tests by client (50 in
average). NIST SRE 2006 database provides 22131 tests, in-
cluding 1570 target tests with up to about 100 tests by clients
(62 in average).The priors used for WMAP are 0.1 for target
and 0.9 for impostors. Table 1 provides examples of the cumu-
lative true target trial distributions for four speakers (taken from
NIST 05), e.g. true target trials for target x appear three times
within the first ten tests, six times between the 10** and 20*"
(nine times in total) and none between the 20" and the 170%".
For target z, there are 7 target trials between the 1°* and the
80", then no more trials are available (denoted by na).

Trials 10 | 20 | 50 | 80 | 100 | 120 | 150 | 170
Targetx | 3 9 9 9 9 9 9 9
Targetz | 1 1 7 7 na na na na
Targety | O 0 0 4 11 na na na
Targetv | 1 8 18 | na | na na na na

Table 1: The cumulative evolution in the number of true target
trials according to the number of overall trials (true or impos-
tor) for 4 speakers.

3.2. Baseline speaker recognition system

The LIA_SpkDet system® developed at the LIA lab is used as
the baseline in this paper. Built from the ALIZE platform [11],
it was evaluated during the NIST SRE’04, SRE’05 and SRE’06
campaigns, where it obtained good performance for a cepstral
GMM-UBM system. Both the LIA_SpkDet system and the AL-
IZE platform are distributed under an open source licence. The
parameterization is performed using SPRO?.

The 512 components UBM is trained on a part of the Fisher
corpus®. Concerning Tnorm, a cohort of 160 target male speak-
ers of NIST SRE 2004 database has been used. For the front-
end processing, the signal is characterized by 50 coefficients in-
cluding 19 linear frequency cepstral coefficients (LFCC) issued
from a filter-bank analysis, their first derivative coefficients,
11 of their second derivative coefficients and the delta energy.
An energy-based frame removal is computed before applying a
mean subtraction and a variance reduction normalization.

Two different channel normalizations are then applied:

2http://www.lia.univ-avignon.fr/heberges/
ALIZE/LIA_RAL

3http://www.irisa.fr/mestiss/qguig/spro

4http://papers.ldc.upenn.edu/LREC2004/
LREC2004_Fisher_Paper.pdf




e the first process is a feature mapping [12] using three
channel conditions (landline, cellular, cordless);

e The second set of features is issued from the Latent Fac-
tor Analysis method applied in the feature domain [13].
The adaptation of the feature vector at time frame ¢,
O(t), is obtained by subtracting to the observation fea-
ture a weighted sum of the channel compensation offset
values:

O(t) = O(t) = 3 m(t) - O,

where 7y, (t) is the Gaussian occupation probability, and
Ch, is the channel compensation offset related to the m-
th Gaussian of the UBM model. The eigen channels (ma-
trix U in the model) are learnt via the algorithm given in
[3] on the NIST SRE 2004 database, with a rank equal
to 40;

The performance is evaluated through classical DET per-
formance curves.

3

3.3. NIST SRE adaptation mode protocol

The NIST unsupervised adaptation mode allows the update of
the target models using the previously seen trial segments (in-
cluding the current segment) before taking the decision on the
current trial segment. It is required to follow the order of the
trials in the test protocol. For each test, a score is issued using
the test data and the current (adapted) target model.

4. Experiments

This section is dedicated to the experimental results. Results
are provided for both 2005 and 2006 NIST databases and for
feature mapping and LFA channel compensation techniques.

4.1. NIST SRE 2005 experiments

Figure 2 presents the results for the adapted system and the
baseline on the NIST SRE 2005, for feature mapping and LFA
channel compensation techniques.
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Figure 2: Results for the adapted/baseline systems, NIST 05

The results demonstrate the potential of the proposed
method as it reaches a significant 27% DCEF relative gain (and
37% in terms of EER) with the feature mapping (FM). When
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the LFA-normalized features are used, the DCF gain is about
20% (and 12.5% for the EER). The gain is smaller in this case,
as expected because LFA is known to perform a better channel
compensation than FM, reducing the influence of the unsuper-
vised adaptation on the channel effects.

In Figure 3, we propose to analyse more precisely the be-
havior of our method. This figure shows the performance in
terms of min DCF of the adapted system for each newly added
test trial (n denotes the number of test trials added in the sys-
tem)’ . The results are very similar for the two channel compen-
sation methods (feature mapping and LFA). The gains are not
linear to the number of added trials. The first trials involve a
loss in terms of performance, explained by the high percentage
of impostor trials compared to target trials proposed by NIST
SRE protocols. When enough trials are inserted, the weighting
process is able to take advantage of the new information and the
unsupervised adaptation brings an improvement. It seems that
a minimum quantity of target data should be present before the
adaptation could deal with impostor data as the unsupervised
adaptation-based system reaches the baseline performance af-
ter about 45 added trials. In this case on average four target
sessions are added during adaptation. It should be noted that
there is not the same number of test trials per speaker. For ex-
ample, ten or more trials are provided for 274 speakers, fifty or
more trials for 118 speakers and 170 trials are available for only
three speakers. This fact constrains the positive influence of n
parameter as fewer adaptation data is added when n increases.

4.2. NIST SRE 2006 experiments

Results for the adapted system and the baseline are provided
in Figure 5, for the NIST SRE 2006 database and using both
FM and LFA. The results are disappointing compared to those
of NISTOS ones. On this database, the unsupervised adaptation
method introduces a significant loss. Three main factors which
could explain this unexpected result are discussed bellow.

Firstly, the confidence measure relies on two score distribution
models. These models were learned on a separate database
(NIST SRE 04) and we have to assess their robustness for
NISTO06 database compared to NISTO5. When looking at the
score versus confidence functions produced by the WMAP pro-
cess for NISTOS and NIST06 we can infer that the problem does

SWhen the target models are updated using a new test trial, the en-
tire test is recomputed, which differs to the NIST protocol where only
the current trial and the next trials scores are computed using the new
models.
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Figure 5: Results for the adapted/baseline systems, NIST 06

not come from this part of the process, as the curves are really
similar, showing a good generalization power of the confidence
estimator.

Secondly, the percentage of impostor trials versus target tri-
als differs between the databases. When about 9.0% of target
tests are proposed in NISTOS, only about 7.1% are present in
NISTO06. Even if the difference seems quite small, it gives 21%
less target data for 2006 database. Moreover, the number of test
trials by target speaker is also smaller for NIST06. In Figure
4, we present the performance of the adapted system versus the
number of test trials added to the system. The behavior of the
system for NISTO6 is very close to the one for NIST0S, with a
first “loss step” and a second “gain part”. This result suggests
that the system will be able to bring a gain if enough target trials
are proposed.

However when looking at the target and impostor score distri-
butions of the baseline system (cf Figure 1) we observe that a
large part of the errors comes from a small percentage of the
impostor trials which obtained a very high score. This phenom-
ena is significantly higher for the NIST 2006 than for the NIST
2005 database. It shows the obvious dependence between the
baseline system and the adaptation process behavior.

5. Discussion

In this paper we proposed a new method for continuously updat-
ing the client models of a speaker recognition system. The main
original contribution of the proposed approach is to consider all
information gathered from the successive test trials, without de-
ciding formally if a trial belongs to the client or to an impostor.
This method relies on the estimation of the trial confidence to
belong to a given target model. The confidence measures are
used to weight the added data (gathered from the test trials) dur-
ing a target model adaptation process.

The proposed unsupervised adaptation outperforms the baseline
system, with a relative DCF improvement of up to 27% (37%
for EER) on NIST 2005 database. When an efficient channel
compensation technique is used (Latent Factor Analysis), the
improvements are smaller but still significant (20% DCF rela-
tive gain and 12.5% for the EER). We noticed that the gain is
correlated to the number of target trials presented to the sys-
tem: a minimum amount of data related to the targeted speaker
should be present in order to take advantage of the adaptation.
However the proposed method does not perform well on NIST
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2006 database. After a deeper analysis of the unsupervised
adaptation behavior, we can conclude that the lack in terms of
performance is highly related to the proportion of target and im-
postor data.

Future work will firstly investigate more deeply the NIST 2006
problem by applying the proposed method on this database with
several impostor versus target trial proportions. Secondly, the
confidence measure was estimated globally in this work, using
all the data gathered from a test trial and for a complete target
model. We will try to estimate this confidence independently
for each component of the target model and using a segmental
view of the test data.
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